Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Patient Rep Outcomes ; 6(1): 123, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2153720

ABSTRACT

BACKGROUND: Although there is extensive literature on the clinical benefits of COVID-19 vaccination, data on humanistic effects are limited. This study evaluated the impact of SARS-CoV-2 infection on symptoms, Health-Related Quality of Life (HRQoL) and Work Productivity and Impairment (WPAI) prior to and one month following infection between individuals vaccinated with BNT162b2 and those unvaccinated. METHODS: Subjects with ≥ 1 self-reported symptom and positive RT-PCR for SARS-CoV-2 at CVS Health US test sites were recruited between 01/31/2022 and 04/30/2022. Socio-demographics, clinical characteristics and vaccination status were evaluated. Self-reported symptoms, HRQoL, and WPAI outcomes were assessed using questionnaires and validated instruments (EQ-5D-5L, WPAI-GH) across acute COVID time points from pre-COVID to Week 4, and between vaccination groups. Mixed models for repeated measures were conducted for multivariable analyses, adjusting for several covariates. Effect size (ES) of Cohen's d was calculated to quantify the magnitude of outcome changes within and between vaccination groups. RESULTS: The study population included 430 subjects: 197 unvaccinated and 233 vaccinated with BNT162b2. Mean (SD) age was 42.4 years (14.3), 76.0% were female, 38.8% reported prior infection and 24.2% at least one comorbidity. Statistically significant differences in outcomes were observed compared with baseline and between groups. The EQ-Visual analogue scale scores and Utility Index dropped in both cohorts at Day 3 and increased by Week 4 but did not return to pre-COVID levels. The mean changes were statistically lower in the BNT162b2 cohort at Day 3 and Week 4. The BNT162b2 cohort reported lower prevalence and fewer symptoms at index date and Week 4. At Week 1, COVID-19 had a large impact on all WPAI-GH domains: the work productivity time loss among unvaccinated and vaccinated was 65.0% and 53.8%, and the mean activity impairment was 50.2% and 43.9%, respectively. Except for absenteeism at Week 4, the BNT162b2 cohort was associated with statistically significant less worsening in all WPAI-GH scores at both Week 1 and 4. CONCLUSIONS: COVID-19 negatively impacted HRQoL and work productivity among mildly symptomatic outpatients. Compared with unvaccinated, those vaccinated with BNT162b2 were less impacted by COVID-19 infection and recovered faster.

2.
Vaccine ; 40(5): 734-741, 2022 01 31.
Article in English | MEDLINE | ID: covidwho-1586267

ABSTRACT

BACKGROUND: People living in clustered communities with health comorbidities are highly vulnerable to COVID-19 infection. Rapid vaccination of vulnerable populations is critical to reducing fatalities and mitigating strain on healthcare systems. We present a case study on COVID-19 vaccine distribution via mobile vans to residents/staff of 47,907 long-term care facilities (LTCFs) across the United States that relied on algorithms to optimize vaccine distribution. METHODS: We developed a modeling framework for vaccine distribution to high-risk populations in a supply-constrained environment. Our framework decomposed this challenge as two separate problems: an assignment problem where we optimally mapped each LTCF to select CVS stores responsible for distributing vaccines; and a scheduling problem where we developed an algorithm to assign available resources efficiently. RESULTS: We assigned 1,214 retail stores as depots for vaccine distribution to LTCFs throughout the United States. Forty-one percent of matched depot-LTCF pairs were within 5 miles of a depot, 74% were within 20 miles, and only 8% mapped to depots farther than 50 miles away. Our two-step approach ensured that the first LTCF vaccination dose was distributed within 9 days after the program start date in 76% of states, and greater than 90% of doses were administered in the minimum amount of time. CONCLUSIONS: We demonstrate that algorithmic approaches are instrumental in maximizing vaccine distribution efficiency. Our learning and framework may be of use to other organizations, including communities where mobile clinics can be established to efficiently distribute vaccines and other healthcare resources in a variety of scenarios.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Long-Term Care , Mobile Health Units , SARS-CoV-2 , United States
SELECTION OF CITATIONS
SEARCH DETAIL